

Abstracts

Comparison of High-Temperature-Superconductor and Metal-Based Resonators

M.R. Namordi, A. Mogro-Campero, L.G. Turner and D.W. Hogue. "Comparison of High-Temperature-Superconductor and Metal-Based Resonators." 1991 Transactions on Microwave Theory and Techniques 39.9 (Sep. 1991 [T-MTT] (Special Issue on Microwave Applications of Superconductivity)): 1468-1474.

A 50 Omega coplanar waveguide (CPW) resonator designed for a fundamental frequency of about 4.75 GHz was fabricated on LaAlO₃. Two versions were fabricated the first using 1.9- μ m-thick gold and the second using a high-temperature superconductor (HTS), YBa₂Cu₃O₇, 0.6 μ m thick. The devices were identically packaged and tested at 77 K. It was found that the HTS resonator had a surface resistance, $R_{s/}$, about six to nine times lower than the Au one. At 45 K, the $R_{s/}$ of the HTS resonator decreases by another factor of 4 compared with its 77 K value. For the HTS resonator, (i) $R_{s/}$ varies as f^2 and (ii) $R_{s/}$, degrades with resonator power density as the RF current density, $J_{c/}$, approaches typical dc measured values. Five identical HTS resonators were fabricated. At 77 K, mean and standard deviations on $R_{s/}$, were $\mu = 1.42$ and $\sigma = 0.46$ m Omega /sq., respectively. The measured σ/μ ratio of 0.3% on the fundamental suggests that narrow passband filters can readily be implemented.

[Return to main document.](#)